Usage Guide

This guide provides detailed instructions for using datamorph-rs in your projects.

Table of Contents

  1. Installation
  2. Basic Usage
  3. Transformation Specifications
  4. Built-in Functions
  5. Error Handling
  6. Best Practices

Installation

Add datamorph-rs to your project:

[dependencies] datamorph-rs = "0.1.0"

Basic Usage

Simple Field Transformation

#![allow(unused)] fn main() { use datamorph_rs::Datamorph; use serde_json::json; let spec = r#"{ "mappings": { "name": { "target": "fullName", "transform": "uppercase" } } }"#; let input = json!({ "name": "john doe" }); let transformer = Datamorph::from_json(spec)?; let result: serde_json::Value = transformer.transform(input)?; }

Multiple Transformations

#![allow(unused)] fn main() { let spec = r#"{ "mappings": { "description": { "target": "summary", "transform": ["trim", "uppercase"] } } }"#; }

Transformation Specifications

Basic Structure

{ "mappings": { "sourceField": { "target": "targetField", "transform": "transformationFunction" } } }

Multiple Transformations

{ "mappings": { "sourceField": { "target": "targetField", "transform": ["function1", "function2"] } } }

Built-in Functions

String Transformations

  • uppercase: Convert string to uppercase
  • lowercase: Convert string to lowercase
  • toString: Convert value to string

Examples

{ "mappings": { "name": { "target": "upperName", "transform": "uppercase" }, "age": { "target": "ageString", "transform": "toString" } } }

Error Handling

#![allow(unused)] fn main() { use datamorph_rs::{Datamorph, Error}; match Datamorph::from_json(spec) { Ok(transformer) => { match transformer.transform(input) { Ok(result) => println!("Success: {}", result), Err(Error::TransformError(msg)) => eprintln!("Transform failed: {}", msg), Err(e) => eprintln!("Other error: {}", e), } }, Err(e) => eprintln!("Failed to parse spec: {}", e), } }

Best Practices

  1. Specification Organization

    • Keep specifications simple and focused
    • Use meaningful field names
    • Document complex transformations
  2. Error Handling

    • Always handle potential errors
    • Validate specifications before use
    • Log transformation errors
  3. Performance

    • Minimize number of transformations
    • Use appropriate data types
    • Consider batch processing for large datasets